Чем отличается частотная модуляция от амплитудной

Чем отличается частотная модуляция от амплитудной

Предупреждаю сразу: сильно просто не получится. Слишком уж сложная штука модуляция.

Что бы понять, что такое модуляция, нужно знать, что такое частота, с этого и начнём.
Для примера возьмём качели: частота качания качелей, это число полных колебаний, качелей в секунду.
Полных, это значит что одно колебание, это движение качели от самого крайнего левого положения, вниз, через центр до самого максимального уровня справа и потом опять через центр до того же уровня слева.
Обычные дворовые качели имеют частоту порядка 0,5 герца, значит что полное колебание они совершают за 2 секунды.
Динамик звуковой колонки качается гораздо быстрее, воспроизводя ноту "Ля" первой октавы (440 герц), он совершает 440 колебаний в секунду.
В электрических цепях колебания, это качание напряжения, от максимального положительного значения, вниз, через ноль напряжения до максимального отрицательного значения, вверх, через ноль опять до максимального положительного. Или от максимального напряжения, через некое среднее до минимального, потом опять через среднее, опять до максимального.
На графике (или экране осциллографа) это выглядит так:

Частота колебаний напряжения на выходе радиостанции излучающей несущую на 18 канале сетки C в "европпе" будет 27175000 колебаний в секунду или 27 мегагерц и 175 килогерц (мега — миллион; кило — тысяча).

Что бы сделать модуляцию наглядной, выдумаем два неких сигнала, один частотой 1000Гц, второй 3000Гц, графически они выглядят так:

Заметим, как отображены эти сигналы на графиках слева. Это графики частоты и уровня. Чем больше частота сигнала, тем правее будет изображён на таком графике сигнал, чем больше его уровень (мощность), тем выше линия этого сигнала на графике.

Теперь представим, что оба эти сигнала мы сложили, то есть в готовом виде наш вымышленный тестовый сигнал есть сумма двух сигналов. Как сложили? Очень просто — поставили микрофон и посадили двух людей перед ним: мужика, который кричал на частоте 1000Гц и бабу, которая верещала на 3000Гц, на выходе микрофона мы получили наш тестовый сигнал, который выглядит так:

И вот именно этот тестовый сигнал мы и будем "подавать" на микрофонный вход нашего вымышленного передатчика, изучая что получается на выходе (на антенне) и как всё это влияет на разборчивость и дальность связи.

О модуляции вообще

Модулированный сигнал несущей на выходе любого передатчика в любом случае (при любой модуляции) получается методом сложения или умножения сигнала несущей на сигнал, который нужно передать, например сигнал с выхода микрофона. Разница между модуляциями лишь в том, что умножается, с чем складывается и в какой части схемы передатчика это происходит.
В плане приёма, тут всё сводится к тому, что бы из принятого сигнала выделить то, чем был модулирован сигнал, усилить это и сделать понятным (слышимым, видимым).

Амплитудная модуляция — AM (АМ, амплитудная модуляция)


Как можно видеть, при амплитудной модуляции уровень напряжения колебаний высокой частоты (несущей) напрямую зависит от величины напряжения поступающего с микрофона.
Напряжение на выходе микрофона увеличивается, увеличивается и напряжение несущей на выходе передатчика, то есть больше мощности на выходе, меньше напряжение с микрофона, меньше напряжение на выходе. Когда напряжение на выходе микрофона в некой центральной позиции, то передатчик излучает некую центральную мощность (при АМ модуляции в 100% при тишине перед микрофоном 50% мощности).
Глубиной АМ модуляции называется уровень влияния сигнала с микрофона на уровень выходной мощности передатчика. Если виляние 30% то значит самый сильный отрицательный импульс напряжения с микрофона уменьшит уровень несущей на выходе на 30% от максимальной мощности.
А вот так выглядит спектр сигнала с AM модуляцией (распределение его компонентов по частотам):

По центру, на частоте 27175000 Гц у нас несущая, а ниже и выше по частоте "боковые полосы", то есть суммы сигнала несущей и звуковых частот нашего тестового сигнала:
27175000+1000Гц и 27175000-1000Гц
27175000+3000Гц и 27175000-3000Гц
Сигналы "несущая минус звук" — нижняя боковая полоса, а "несущая плюс звук" — верхняя боковая полоса.
Не трудно заметить, что для передачи информации достаточно только одной боковой полосы, вторая лишь повторяет ту же самую информацию, но только с противоположным знаком попусту расходуя мощность передатчика на излучение этой дублирующей информации в эфир.
Если убрать несущую, которая полезной информации вообще не содержит и одну из боковых полос, то получиться SSB модуляция (по-русски: ОБП) — модуляция с одной боковой полосой и отсутствующей несущей (однополосная модуляция).

SSB модуляция (ОБП, однополосная модуляция)

Вот так выглядит SSB на выходе передатчика:

Видно, что этот сигнал мало чем отличается от АМ модуляции. Оно и понятно, SSB это продолжение AM, то есть SSB создаётся из АМ модуляции, из сигнала которой удаляется не нужная боковая полоса и несущая.
Если же взглянуть на спектр сигнала, то разница очевидна:

Здесь нет ни несущей ни дублирующей боковой полосы (на этом графике показана USB, т.е. однополосная модуляция, где оставлена верхняя боковая полоса, есть ещё и LSB, это когда оставлена нижняя боковая полоса).
Нет несущей, нет дублирующей боковой — вся мощность передатчика уходит только на передачу полезной информации.
Только принять такую модуляцию на обычный АМ приёмник невозможно. Для приёма нужно восстановить "отправную точку" — несущую. Сделать это просто — частота на которой работает передатчик известна, значит нужно лишь добавить несущую такой же частоты и отправная точка появиться. Любопытный читатель наверно уже заметил, что если не известна частота передатчика, то отправная точка будет не правильная, мы добавим не ту несущую, что же мы при этом услышим? А услышим мы при этом голос или "быка" или "гномика". Произойдёт это потому, что приёмник в данном виде модуляции не знает, какие частоты были у нас изначально, то ли это были 1000Гц и 3000Гц, то ли 2000Гц и 4000Гц, то ли 500Гц и 2500Гц — "расстояния" то между частотами верные, а вот начало сместиться, как результат или "пи-пи-пи" или "бу-бу-бу".

CW модуляция (телеграф)

С телеграфом всё просто — это сигнал 100% АМ модуляция, только резкая: или сигнал есть на выходе передатчика или сигнала нет. Нажат телеграфный ключ — есть сигнал, отпущен — нет ничего.
Выглядит на графиках телеграф вот так:

Соответственно спектр телеграфного сигнала:

То есть частота несущей 100% промодулирована нажатиями на телеграфный ключ.
Почему на спектре 2 палочки немного отступая от сигнала "центральной частоты" а не одна единственная — несущей?
Здесь всё просто: как бы то ни было, телеграф это АМ, а АМ это сумма сигналов несущей и модуляции, так как телеграф (морзянка), это серия нажатий на ключик то это тоже колебания с некоторой но частотой, пусть и низкой по сравнению со звуком. Именно на частоту нажатия на ключик и отступают боковые полосы телеграфного сигнала от несущей.
Как передавать такие сигналы?
В простейшем случае — нажимая на кнопку передачи во время молчания перед микрофоном.
Как принимать такие сигналы?
Для приёма нужно несущую, появляющуюся в эфире в такт нажатиям на ключ, превратить в звук. Методов много, самый простой — подключить к выходу детектора АМ приёмника схему, которая пикает каждый раз как на детекторе появляется напряжение (т.е. на детектор поступает несущая). Более сложный и разумный способ — смешать сигнал поступающий из эфира с сигналом генератора (гетеродина) встроенного в приёмник, а разность сигналов подать на усилитель звука. Так если частота сигнала в эфире 27175000Гц, частота генератора приёмника 27174000, то на вход усилителя звуковой частоты поступит сигнал 27175000+27174000=54349000Гц и 27175000-27174000=1000Гц, естественно первый из них не звуковой а радиосигнал, его усилитель звука не усилит, а вот второй, 1000Гц, это уже слышимый звук и его он усилит и мы услышим "пииии", пока есть в эфире несущая и тишину (шумы эфира) когда нет.
Кстати, когда включаются двое на передачу одновременно, эффект "пииии" возникающий от сложения и вычитания несущих в приёмнике, думаю, замечали многие. То что слышно — разница между сигналами несущих возникающая в нашем приёмнике.

Читайте также:  Создавая сибирь природа допустила просчет

FM модуляция (ЧМ, частотная модуляция)

Собственно суть частотной модуляции проста: частота несущей в такт напряжению на выходе микрофона немного меняется. Когда напряжение на микрофоне увеличивается, увеличивается и частота, когда уменьшается напряжение на выходе микрофона, то уменьшается и частота несущей.
Уменьшение и увеличение частоты несущей происходит в небольших пределах, например для Си-Би радиостанций это плюс/минус 3000Гц при частоте несущей порядка 27000000Гц, для радиовещательных станций FM диапазона, это плюс/минус 100000Гц.
Параметр ЧМ модуляции — индекс модуляции. Соотношение звука максимальной частоты которую пропустит микрофонный усилитель передатчика к максимальному изменению частоты несущей при самом громком звуке. Не трудно заметить, что для Си-Би это 1 (или 3000/3000), а для вещательных станций FM это примерно 6 . 7 (100000/15000).
При ЧМ модуляции несущая по уровню (мощность сигнала передатчика) всегда постоянна, она не меняется от громкости звуков перед микрофоном.
В графическом виде, на выходе передатчика ЧМ модуляция выглядит так:

При ЧМ модуляции, как и при АМ на выходе передатчика есть и несущая и две боковые полосы, так как частота несущей болтается в такт модулирующему сигналу, отступая от центра:

DSB, ДЧТ, фазовая и другие виды модуляции

Справедливости ради, нужно отметить, что существуют и другие виды модуляции несущей:
DSB — две боковые полосы и отсутствующая несущая. DSB, по сути АМ модуляция у которой удалена (вырезана, подавлена) несущая.
ДЧТ — двухчастотный телеграф, по сути, есть не что иное, как частотная модуляция, но нажатиями телеграфного ключа. Например, точке соответствует сдвиг несущей на 1000Гц, а тире на 1500Гц.
Фазовая модуляция — модуляция фазы несущей. Частотная модуляция при малых индексах 1-2 по сути есть фазовая модуляция.

В некоторых системах (телевидение, FM стерео радиовещание) модуляция несущей осуществляется ещё одной промодулированной несущей, а она уже и несёт полезную информацию.
Например, упрощённо, FM стерео вещательный сигнал, это несущая промодулированная частотной модуляцией, сигналом который сам есть несущая промодулированная DSB модуляций, где одна боковая — это сигнал левого канала, а другая боковая полоса это сигнал правого канала звука.

Так как АМ и SSB это модуляции, у которых выходной сигнал передатчика пропорционален напряжению, поступающему с микрофона, то важно, что бы он линейно усиливался, как на приёмной, так и на передающей стороне. То есть если усилитель усиливает в 10 раз, то при напряжении на его входе 1 вольт на выходе должно быть 10 вольт, а при 17 вольтах на входе на выходе должно быть точно 170 вольт. Если усилитель будет не линеен, то есть при напряжении на входе 1 вольт усиление 10 и на выходе 10 вольт, а при 17 вольтах на входе усиление окажется лишь 5 и на выходе будет 85 вольт, то появятся искажения — хрипы и хрюки при громких звуках перед микрофоном. Если усиление будет наоборот меньше для малых входных сигналах, то будут хрипы при тихих звуках и неприятные призвуки даже при громких (потому что в начале своего колебания любой звук проходит зону близкую к нулю).
Особенна важна линейность усилителей для SSB модуляции.

Для выравнивания уровней сигналов в приёмниках АМ и SSB используются специальные узлы схемы — автоматические регуляторы усиления (схемы АРУ). Задача АРУ выбирать такое усиление узлов приёмника, что бы и сильный сигнал (от близкого корреспондента) и слабый (от удалённого), в конце концов, оказались примерно одинаковыми. Если АРУ не использовать, то слабые сигналы будут слышны тихо-тихо, а сильные разорвут излучатель звука приёмника в клочки, как капля никотина разрывает хомяка. Если же АРУ будет слишком быстро реагировать на изменение уровня, то она начнёт не просто выравнивать уровни сигналов от близких и далёких корреспондентов, но и внутри сигнала "душить" модуляцию — уменьшая усиление при повышении напряжения и повышая при понижении, сводя всю модуляцию к немодулированному сигналу.

Для ЧМ модуляции не требуется особой линейности усилителей, при ЧМ модуляции информацию несёт изменение частоты и никакое искажение или ограничение уровня сигнала не может изменить частоту сигнала. Собственно в приёмнике ЧМ вообще обязательно установлен ограничитель уровня сигнала, так как уровень не важен, важна частота, а изменение уровня будет только мешать выделить изменения частоты и превратить ЧМ несущую в звук сигнала, которым она промодулирована.
К слову сказать, именно из-за того, что в ЧМ приёмнике все сигналы ограничиваются, то есть слабые шумы имеют почти тот же уровень, что и сильный полезный сигнал, в отсутствии сигнала ЧМ детектор (демодулятор) так сильно шумит — он пытается выделить изменение частоты шумов на входе приёмника и шумов самого приёмника, а в шумах изменение частоты сильно велико и случайно, вот и слышны случайные сильные звуки: громкий шум.
В АМ и SSB приёмнике шума при отсутствии сигнала меньше, так как сам шум приёмника по уровню всё же мал и шумы на входе по сравнению с полезным сигналом по уровню малы, а для AM и SSB важен именно уровень.

Для телеграфа тоже не очень важна линейность, там информацию несёт само наличие или отсутствие несущей, а её уровень лишь побочный параметр.

В сигналах АМ и SSB гораздо заметнее импульсные помехи, такие как треск неисправного зажигания автомобилей, щелчки грозовых разрядов или рокот от импульсных преобразователей напряжения.
Чем слабее сигнал, чем меньше его мощность, тем тише звук на выходе приёмника, а чем сильнее, тем громче. Хотя АРУ и делает своё дело, выравнивая уровни сигналов, но её возможности не бесконечны.
Для SSB модуляции практически невозможно пользоваться шумоподавителем и вообще понять, когда другой корреспондент отпустил передачу, так как при молчании перед микрофоном в SSB передатчик в эфир ничего не излучает — нет несущей, а если перед микрофоном тишина, то нет и боковых полос.

Читайте также:  Как сделать маленькое окно в игре

ЧМ сигналы меньше подвержены влиянию импульсных помех, но из-за сильного шума ЧМ детектора в отсутствии сигнала просто невыносимо сидеть без шумоподавителя. Каждое выключение передачи корреспондента в приёмнике сопровождается характерным "пшык" — детектор уже начал переводить шумы в звук, а шумоподавитель ещё не закрылся.

Если слушать АМ на ЧМ приёмник или наоборот, то будет слышно хрюканье, но разобрать о чём речь всё же можно. Если на ЧМ или АМ приёмник послушать SSB, то будет только дикая аудио-каша из "хрю-жу-жу-бжу" и совершенно никакой разборчивости.
На SSB приёмник можно прекрасно послушать CW (телеграф), АМ, а с некоторыми искажениями и ЧМ с малыми индексами модуляции.

Если включаются одновременно две или больше АМ или ЧМ радиостанций на одной частоте, то получается каша из несущих, этакий писк и визг среди которого ничего не разобрать.
Если же включатся два или больше SSB передатчика на одной частоте, то в приёмнике будет слышно всех, кто говорил, так как несущей у SSB нет и биться (смешиваться до свиста) нечему. Слышно всех, так, словно все сидят в одной комнате и разом заговорили.

Если у АМ или ЧМ частота приёмника не точно совпадает с частотой передатчика, то появляются искажения на громких звуках, "подхрипывания".
Если у SSB передатчика частота меняется в такт уровню сигнала (например, аппаратура не тянет по питанию), то в голосе слышно бульканье. Если плавает частота приёмника или передатчика, то звук плавает по частоте, то "бубнит", то "чирикает".

Теоретически, подчёркиваю — теоретически, при равной мощности передатчика, дальность связи от вида модуляции будет зависеть так:
АМ = Расстояние * 1
ЧМ = Расстояние * 1
SSB = Расстояние * 2
В той самой теории, энергетически, SSB выигрывает у АМ в 4 раза по мощности, или в 2 раза по напряжению. Выигрыш появляется за счёт того, что мощность передатчика не расходуется на излучение бесполезной несущей и попусту дублирующей информацию второй боковой полосы.
На практике выигрыш меньше, так как мозг человека не привык слышать шумы эфира в паузах между громкими звуками и несколько страдает разборчивость.
ЧМ тоже модуляция "с сюрпризом" — одни умные книги говорят, что АМ и ЧМ одна другой не лучше, а то и вовсе ЧМ хуже, другие утверждают, что при малых индексах модуляции (а это Си-Би и радиолюбительские радиостанции) ЧМ выигрывает у АМ в 1,5 раза. На деле, по субъективному мнению автора ЧМ "пробивнее", чем АМ примерно в 1,5 раза, прежде всего, потому что ЧМ менее подвержена импульсным помехам и качаниям уровня сигнала.

Самая сложная аппаратура это SSB.
По сути SSB аппарат с лёгкостью может работать в AM или ЧМ после ничтожно малой переделки.
Переделать АМ или ЧМ приёмопередатчик в SSB почти невозможно (потребуется ввести в схему очень, очень много дополнительных узлов и полностью переделать блок передатчика).
От автора: переделка АМ или ЧМ аппарата в SSB лично мне кажется полным безумием.
SSB аппарат "с нуля" — собирал, но что бы переделать АМ или ЧМ в SSB — нет.

Второй по сложности, это ЧМ аппарат.
По сути ЧМ аппарат уже содержит в приёмнике всё, что нужно для детектирования АМ сигналов, так как у него тоже есть АРУ (автоматическая регулировка усиления) и следовательно детектор уровня принимаемой несущей, то есть по сути полноценный АМ приёмник, только работающий где-то там, внутри (от этой части схемы работает и пороговый шумоподавитель).
С передатчиком будет сложнее, так как почти все его каскады работают в не линейном режиме.
От автора: переделать можно, но никогда в этом не было нужды.

АМ аппаратура самая простая.
Что бы переделать АМ приёмник в ЧМ, потребуется ввести новые узлы — ограничитель и ЧМ детектор. По факту ограничитель и ЧМ детектор, это 1 микросхема и чуть-чуть деталей.
Переделка АМ передатчика в ЧМ значительно проще, так как нужно лишь ввести цепочку, которая будет "болтать" частоту несущей в такт напряжению, поступающему с микрофона.
От автора: пару раз переделывал АМ трансивер в АМ/ЧМ, в частности Си-Би радиостанции "Cobra 23 plus" и "Cobra 19 plus".

Как сравнить различные методы модуляции с точки зрения производительности и применений? Давайте посмотрим.

Важно понимать основные характеристики трех типов радиочастотной модуляции. Но эта информация не существует изолировано – цель заключается в разработке реальных систем, которые эффективно отвечают требованиям производительности. Таким образом, мы должны иметь общее представление о том, какой метод модуляции подходит для конкретного приложения.

Амплитудная модуляция

Амплитудная модуляция проста в плане реализации и анализа. Кроме того, AM сигналы довольно легко демодулировать. В целом, тогда AM можно рассматривать как простую, недорогую схему модуляции. Однако, как обычно, простота и низкая стоимость сопровождаются компромиссами в производительности – мы никогда не ожидаем, что более простое и дешевое решение будет самым лучшим.

Возможно, я буду неточным, если опишу AM системы как «редкие», поскольку AM приемники присутствуют на бесчисленных транспортных средствах. Однако применения аналоговой амплитудной модуляции в настоящее время весьма ограничены, поскольку AM имеет два существенных недостатка.

Помимо AM радиовещания, аналоговая амплитудная модуляция используется в гражданской авиации

Амплитудный шум

Шум – это постоянная проблема в беспроводных системах связи. В определенном смысле качество радиочастотного проекта можно суммировать по отношению сигнал/шум демодулированного сигнала: меньше шума в принятом сигнале означает более высокое качество (для аналоговых систем) или меньшее количество битовых ошибок (для цифровых систем). Шум присутствует всегда, и мы всегда должны признавать в нем основную угрозу для производительности системы.

Шум – случайный электрический шум, помехи, электрические и механические переходные процессы – воздействует на уровень сигнала. Другими словами, шум может создавать амплитудную модуляцию. И это является проблемой, поскольку случайную амплитудную модуляцию, возникающую из-за шума, нельзя отличить от преднамеренной амплитудной модуляции, выполняемой передатчиком. Шум является проблемой для любого радиосигнала, но AM системы особенно восприимчивы.

Линейность усилителя

Одной из основных проблем в разработке радиочастотных усилителей мощности является линейность (более конкретно, трудно добиться и высокой эффективности, и высокой линейности одновременно). Линейный усилитель применяет к входному сигналу определенный фиксированный коэффициент усиления; графически это выглядит так: передаточная функция линейного усилителя представляет собой просто прямую линию с наклоном, соответствующим коэффициенту усиления.

Прямая линия представляет собой отклик идеального линейного усилителя: выходное напряжение всегда равно входному напряжению, умноженному на фиксированный коэффициент усиления

У реальных усилителей всегда есть некоторая степень нелинейности, что означает, что на усиление, применяемое к входному сигналу, влияют характеристики входного сигнала. Результатом нелинейного усиления являются искажения, т.е. создание энергии на частотах гармоник.

Читайте также:  Установить принтер xerox phaser 3140

Можно также сказать, что нелинейное усиление является формой амплитудной модуляции. Если коэффициент усиления усилителя изменяется в зависимости от частоты входного сигнала или в соответствии с внешними факторами, такими как температура или состояние источника питания, передаваемый сигнал будет испытывать непреднамеренную (и нежелательную) амплитудную модуляцию. Это является проблемой в AM системах, поскольку паразитная амплитудная модуляция мешает преднамеренной амплитудной модуляции.

Любая схема модуляции, которая включает в себя изменения амплитуды, более восприимчива к влиянию нелинейности. Это включает в себя как обычную аналоговую амплитудную модуляцию, так и широко используемые цифровые схемы, известные в совокупности как квадратурная амплитудная модуляция (QAM).

Угловая модуляция

Частотная и фазовая модуляции кодируют информацию во временны́х характеристиках передаваемого сигнала и, следовательно, устойчивы к амплитудному шуму и нелинейности усилителя. Частота сигнала не может быть изменена шумом или искажением. Могут быть добавлены дополнительные частотные составляющие, но исходная частота всё равно будет присутствовать. Разумеется, шум оказывает негативное влияние на FM и PM системы, но шум напрямую не искажает характеристики сигнала, которые использовались для кодирования низкочастотных данных.

Как упоминалось выше, разработка усилителя мощности включает в себя компромисс между эффективностью и линейностью. Угловая модуляция совместима с низколинейными усилителями, и эти низколинейные усилители более эффективны с точки зрения энергопотребления. Таким образом, угловая модуляция является хорошим выбором для маломощных радиочастотных систем.

Ширина полосы частот

Эффекты в частотной области от амплитудной модуляции более просты, чем от частотной и фазовой модуляций. Это можно считать преимуществом AM: важно иметь возможность прогнозировать ширину полосы частот, занимаемую модулированным сигналом.

Однако сложность прогнозирования спектральных характеристик FM и PM актуальна больше для теоретической части проектирования. Если мы сосредоточимся на практических соображениях, угловая модуляция может считаться выгодной, поскольку она может преобразовывать заданную ширину полосы частот низкочастотного сигнала в несколько меньшую (по сравнению с AM) ширину полосы частот передаваемого сигнала.

Частота против фазы

Частотная и фазовая модуляции тесно связаны; тем не менее, есть ситуации, когда одна из них лучше другой. Различия между ними более выражены при цифровой модуляции.

Аналоговые частотная и фазовая модуляции

Как мы видели в статье про фазовую модуляцию, когда низкочастотный модулирующий сигнал является синусоидой, PM сигнал представляет собой просто сдвинутую версию соответствующего FM сигнала. Поэтому неудивительно, что ни у FM, ни у PM нет никаких серьезных плюсов или минусов, связанных со спектральными характеристиками или восприимчивостью к помехам.

Однако аналоговая частотная модуляция гораздо более распространена, чем аналоговая фазовая модуляция, и причина в том, что схемотехника FM модуляции и демодуляции более проста. Например, частотная модуляция может быть реализована чем-то простым, таким как генератор, построенный с использованием катушки индуктивности и конденсатора, управляемого напряжением (т.е. конденсатора, который изменяет свою емкость в зависимости от напряжения низкочастотного модулирующего сигнала).

Цифровые частотная и фазовая модуляции

Различия между PM и FM становятся весьма значительными, когда мы входим в область цифровой модуляции. При первом рассмотрении – это частота битовых ошибок. Очевидно, что частота битовых ошибок любой системы будет зависеть от разных факторов, но если мы математически сравниваем двоичную PSK систему с эквивалентной двоичной FSK системой, мы обнаружим, что для двоичной FSK требуется передавать значительно больше энергии для достижения той же частоты битовых ошибок. Это является преимуществом цифровой фазовой модуляции.

Но обычная цифровая фазовая модуляция также имеет два существенных недостатка:

  • Как обсуждалось в статье про цифровую фазовую модуляцию, обычная (то есть недифференциальная) PSK несовместима с некогерентными приемниками. FSK, напротив, не требует когерентного детектирования.
  • Обычные схемы PSK, особенно QPSK, включают в себя резкие изменения фазы, которые приводят к резким изменениям амплитуды модулированного сигнала, а участки с высоким наклоном формы сигнала уменьшаются по амплитуде, когда сигнал обрабатывается фильтром нижних частот. Эти изменения амплитуды в сочетании с нелинейным усилением приводят к проблеме, называемой внеполосным излучением. Чтобы уменьшить внеполосное излучение, мы можем использовать более линейный (и, следовательно, менее эффективный) усилитель мощности или реализовать специализированную версию PSK. Или мы можем перейти на FSK, которая не требует резких изменений фазы.

Здесь вы можете видеть изменения амплитуды, вызванные фильтрацией нижних частот сигала PSK

Чтобы осуществить эффективную передачу сигналов в какой-либо среде, необходимо перенести спектр этих сигналов из низкочастотной области в область достаточно высоких частот. Данная процедура получила в радиотехнике название модуляции.

Сущность модуляции заключается в следующем. Формируется некоторое колебание (чаще всего гармоническое), называемое несущим колебанием или просто несущей, и какой-либо из параметров этого колебания изменяет­ся во времени пропорционально исходному сигналу. Исходный сигнал называют модулирующим, а результирующее колебание с изменяющи­мися во времени параметрами — модулированным сигналом. Обратный процесс — выделение модулирующего сигнала из модулированного колебания — называется демодуляцией.

Классификация видов модуляции:

1) по виду информационного сигнала (модулирующий сигнал);

— непрерывная модуляция (аналоговый сигнал);

— дискретная модуляция (дискретный сигнал);

2) по виду переносчика (или несущей частоты)

— гармоническая (синусоидальный сигнал);

— импульсная (прямоугольный периодический импульс).

3) по виду параметров несущей частоты, которые претерпевают изменения под действием информационного сигнала.

— широтно-импульсная модуляция (рисунок 1.1).

Рисунок.1.1 – Виды модуляции

Гармонический сигнал общего вида:

У данного сигнала есть три параметра: амплитуда А, частота ω и начальная фа­за φ. Каждый из них можно связать с модулирующим сигналом, получив, таким образом, три основных вида модуляции: амплитудную, частотную и фазовую. Частотная и фазовая модуляция очень тесно взаимосвязаны, поскольку обе они влияют на аргумент функции cos. Поэтому эти два вида моду­ляции имеют общее название — угловая

В настоящее время все большая часть информации, передаваемой по разнообраз­ным каналам связи, существует в цифровом виде. Это означает, что передаче под­лежит не непрерывный (аналоговый) модулирующий сигнал, а последователь­ность целых чисел п, п1, п2,. которые могут принимать значения из некоторого фиксированного конечного множества. Эти числа, называемые символами, поступают от источника информации с периодом Т, а частота, соответствующая этому периоду, называется символьной скоростью: fT = 1/Т.

Часто используемым на практике вариантом является двоичная последовательность символов, когда каждое из чисел ni может принимать одно из двух значений — 0 или 1.

Последовательность передаваемых символов является, очевидно, дискретным сиг­налом. Поскольку символы принимают значения из конечного множества, этот сигнал фактически является и квантованным, то есть его можно назвать цифровым сигналом.

Типичный подход при осуществлении передачи дискретной последовательности символов состоит в следующем. Каждому из возможных значений символа со­поставляется некоторый набор параметров несущего колебания. Эти параметры поддерживаются постоянными в течение интервала Т, то есть до прихода сле­дующего символа. Фактически это означает преобразование последовательности чисел <nk> в ступенчатый сигнал Sn(t) с использованием кусочно-постоянной ин­терполяции:

Ссылка на основную публикацию
Хайскрин пауэр айс эво
Вас интересуют характеристики Highscreen Power Ice Evo (Хайскрин Повер Ис Эво)? Мы собрали всю важную информацию, чтобы помочь определиться с...
Установить gvlk ключ что это
В связи с недавним выходом окончательной RTM версии пакета Microsoft Office 2016, корпоративные заказчики уже могут начинать переход на новую...
Установить openal32 dll для windows 7
Данная библиотека задействуется во многих процессах во время работы компьютера. Например, она используется в играх, мультимедиа и различных программах. Иногда...
Халявные страницы в вк логины и пароли
Please complete the security check to access youhack.ru Why do I have to complete a CAPTCHA? Completing the CAPTCHA proves...
Adblock detector