Формула arcsin и arccos

Формула arcsin и arccos

1)Понятие степени. Свойства степеней. Примеры.

Степенью называется выражение вида: , где:

— основание степени;

— показатель степени.

Степень с натуральным показателем

Определем понятие степени, показатель которой — натуральное число (т.е. целое и положительное).

По определению: .

Возвести число в квадрат — значит умножить его само на себя:

Возвести число в куб — значит умножить его само на себя три раза: .

Возвести число в натуральную степень — значит умножить число само на себяраз:

Степень с целым показателем

Если показателем степени является целое положительное число:

, n > 0

Возведение в нулевую степень:

, a ≠ 0

Если показателем степени является целое отрицательное число:

, a ≠ 0

Прим: выражение не определено, в случаеn ≤ 0. Если n > 0, то

Степень с рациональным показателем

n — натуральное число;

Возведение степени в степень

Арифметический квадратный корень

Уравнение имеет два решения:x=2 и x=-2. Это числа, квадрат которых равен 4.

Рассмотрим уравнение . Нарисуем график функциии увидим, что и у этого уравнения два решения, одно положительное, другое отрицательное.

Но в данному случае решения не являются целыми числами. Более того, они не являются рациональными. Для того, чтобы записать эти иррациональные решения, мы вводим специальный символ квадратного корня.

Арифметический квадратный корень — это неотрицательное число, квадрат которого равен,a ≥ 0. При a 0,a≠1), называется показательной функцией с основанием a.

Сформулируем основные свойства показательной функции:

1. Область определения — множество R действительных чисел.

2. Область значений — множество R+ всех положительных действительных чисел.

3. При a>1 функция возрастает на всей числовой прямой; при 0

ax1>ax2, если x1 1

Логарифм и его свойства. Примеры

Логарифмом числа по основанию() называется такое число, что, то есть записииравносильны. Логарифм имеет смысл, если.

Если немного перефразировать — Логарифм числа по основаниюопределяется как показатель степени, в которую надо возвести число, чтобы получить число(Логарифм существует только у положительных чисел).

Логарифм в переводе с греческого буквально означает "число, изменяющее отношение".

Натуральный логарифм — логарифм по основанию, гдечисло Эйлера.

Десятичный логарифм — логарифм по основанию 10.

основное логарифмическое тождество.

Логарифм единицы по любому положительному, отличному от 1, основанию равен нулю. Это возможно потому, что из любого действительного числа можно получить 1 только возведя его в нулевую степень.

логарифм произведения.

Логарифм произведения равен сумме логарифмов сомножителей.

логарифм частного.

Логарифм частного (дроби) равен разности логарифмов сомножителей.

логарифм степени.

Логарифм степени равен произведению показателя степени на логарифм ее основания.

— переход к новому основанию.

Вычислить , если

Решение. Перепишем данное выражение, используя свойство логарифма степени и логарифма произведения:

Ответ.

Для успешной работы с арксинусами, арккосинусами, арктангенсами и арккотангенсами чисел нужно знать существующие между ними связи. Эти связи удобно записывать в виде формул.

В этой статье мы разберем основные формулы с arcsin, arccos, arctg и arcctg, для удобства работы и запоминания разобьем эти формулы по группам, дадим их вывод и доказательство, а также покажем примеры использования.

Навигация по странице.

Первые четыре блока формул представляют собой основные свойства арксинуса, арккосинуса, арктангенса и арккотангенса числа, в указанной статье сайта www.cleverstudents.ru Вы найдете и доказательство этих формул, и примеры их применения. Здесь мы не будем повторяться, а лишь приведем сами формулы, чтобы они все были в одном месте.

Синус арксинуса, косинус арккосинуса и т.п.

Эти формулы очевидны и напрямую следуют из определений арксинуса, арккосинуса, арктангенса и арккотангенса числа. Они показывают, чему равен синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса.

Арксинус синуса, арккосинус косинуса и т.п.

Эти формулы также очевидны и следуют из определений арксинуса, арккосинуса, арктангенса и арккотангенса. Они определяют, чему равен арксинус синуса, арктангенс тангенса, арккосинус косинуса и арккотангенс котангенса. Заметим, что стоит быть очень внимательными к указанным условиям, так как если угол (число) α выходит за указанные пределы, то эти формулы использовать нельзя, ибо они дадут неверный результат.

Читайте также:  Как открыть файл cda на компьютере

Связи между arcsin, arccos, arctg и arcctg противоположных чисел

Формулы этого блока показывают, как арксинус, арккосинус, арктангенс и арккотангенс отрицательного числа выражаются через arcsin , arccos , arctg и arcctg противоположного ему положительного числа. Эти формулы позволяют избавиться от работы с арксинусами, арккосинусами, арктангенсами и арккотангенсами отрицательных чисел, и перейти к работе с этими аркфункциями от положительных чисел.

Сумма арксинуса и арккосинуса числа, сумма арктангенса и арккотангенса числа

Записанные формулы позволяют выразить арксинус числа через арккосинус этого же числа, арккосинус через арксинус, арктангенс через арккотангенс и арккотангенс через тангенс того же числа.

Синус от арккосинуса, тангенс от арксинуса и иже с ними

На практике очень полезными оказываются формулы, устанавливающие отношения между тригонометрическими функциями и аркфункциями. К примеру, может потребоваться вычислить синус арккосинуса некоторого числа, или тангенс арксинуса. Запишем список формул, позволяющих решать подобные задачи, дальше покажем примеры их применения и приведем доказательства этих формул.

Приведем несколько примеров использования записанных формул. Например, вычислим косинус арктангенса корня из пяти. Соответствующая формула имеет вид , таким образом .

Другой пример: используя формулу синуса арккосинуса вида , мы можем вычислить, к примеру, синус арккосинуса одной второй, имеем . Заметим, что в этом примере вычисления можно провести и непосредственно, они приводят к тому же результату: (при необходимости смотрите статьи вычисление значений синуса, косинуса, тангенса и котангенса и вычисление значений арксинуса, арккосинуса, арктангенса и арккотангенса).

Осталось показать вывод записанных формул.

Формулы, находящиеся в ячейках таблицы на диагонали, есть формулы синуса арксинуса, косинуса арккосинуса и т.д. Они были получены ранее, поэтому не нуждаются в доказательстве, и их мы будем использовать для доказательства остальных формул. Более того, для вывода формул нам еще потребуются основные тригонометрические тождества.

Выведем сначала формулу синуса арккосинуса, синуса арктангенса и синуса арккотангенса. Из основных тригонометрических тождеств и , а также учитывая, что , легко получить следующие формулы , и , выражающие синус через косинус, синус через тангенс и синус через котангенс при указанных условиях. Подставляя arccos a вместо альфа в первую формулу, получаем формулу синуса арккосинуса; подставляя arctg a вместо альфа во вторую формулу, получаем формулу синуса арктангенса; подставляя arcctg a вместо альфа в третью формулу, получаем формулу синуса арктангенса.

Вот краткая запись вышеперечисленных выкладок:

  • так как , то ;
  • так как , то ;
  • так как , то .

По аналогии легко вывести формулы косинуса арксинуса, косинуса арктангенса и косинуса арккотангенса:

  • так как , то ;
  • так как , то ;
  • так как , то .

Теперь покажем вывод формул тангенса арксинуса, тангенса арккосинуса и тангенса арккотангенса:

  • так как , то при ;
  • так как , то при ;
  • так как , то при .

Формулы котангенса арксинуса, котангенса арккосинуса и котангенса арктангенса легко получить из формул тангенса арксинуса, тангенса арккосинуса и тангенса арктангенса, поменяв в них числитель и знаменатель, так как .

arcsin через arccos, arctg и arcctg; arccos через arcsin, arctg и arcctg и т.п.

Из формул связи тригонометрических и обратных тригонометрических функций, разобранных в предыдущем пункте, можно получить формулы, выражающие одну из аркфункций через другие аркфункции, например, выражающие арксинус одного числа, через арккосинус, арктангенс и арккотангенс другого числа. Перечислим их.

По этим формулам можно заменить арксинус на арккосинус, арктангенс и арккотангенс соответственно:

Читайте также:  Китайский шуруповерт аккумуляторный какой лучше

Вот формулы, выражающие арккосинус через арксинус, арктангенс и арккотангенс:

Формулы арктангенса через арксинус, арккосинус и арккотангенс имеют следующий вид:

Наконец, вот ряд формул с арккотангенсом:

Доказать все записанные формулы можно, отталкиваясь от определений арксинуса, арккосинуса, арктангенса и арккотангенса числа, а также формул из предыдущего пункта.

Для примера, докажем, что . Известно, что при указанных a представляет собой угол (число) от минус пи пополам до пи пополам. Более того, по формуле синуса арктангенса имеем . Следовательно, при −1 является арксинусом числа a по определению, то есть, .

По аналогии можно доказать и остальные формулы, представленные в данном пункте статьи.

В заключение этого пункта покажем пример использования полученных формул. Для примера вычислим с их помощью, чему равен синус арккотангенса минус корня из трех. Обратившись к формуле вида , выражающей арккотангенс через арксинус, при имеем .

В данном примере мы могли вычислить требуемое значение и непосредственно: . Очевидно, что мы получили тот же результат.

Понятно, что для вычисления требуемого значения мы могли поступить и иначе, воспользовавшись формулой, выражающей синус через котангенс вида . Тогда решение выглядело бы так: . А можно было и сразу применить формулу синуса арккотангенса вида : .

Некоторые другие формулы

Основные формулы тригонометрии и формулы синуса арксинуса, косинуса арккосинуса, тангенса арктангенса и котангенса арккотангенса позволяют вывести ряд формул с arcsin , arccos , arctg и arcctg , еще не упомянутых в данной статье. Но заметим, что они уже достаточно специфичны, и приходится их использовать далеко не часто. Более того, такие формулы удобнее каждый раз выводить, нежели запоминать.

Для примера возьмем формулу половинного угла . Если добавить условие, что величина угла альфа принадлежит отрезку от нуля до пи, то будет справедливо равенство . При указанном условии угол альфа можно заменить на арккосинус числа a , что нам даст формулу вида , откуда можно получить следующую формулу, выражающую арккосинус через арксинус: .

Используя другие тригонометрические формулы, можно обнаружить ряд других связей между arcsin , arccos , arctg и arcctg .

В заключение этого пункта хочется сказать, что практическую пользу представляют даже не столько сами эти специфические формулы, связывающие arcsin , arccos , arctg и arcctg , сколько умения выполнять преобразования, используемых при выводе этих формул. Продолжением темы служит раздел теории преобразование выражений с арксинусом, арккосинусом, арктангенсом и арккотангенсом.

Урок и презентация на темы: "Арксинус. Таблица арксинусов. Формула y=arcsin(x)"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Что будем изучать:
1. Что такое арксинус?
2. Обозначение арксинуса.
3. Немного истории.
4. Определение.
5. Таблица значений арксинуса.
6. Примеры.

Что такое арксинус?

Ребята, мы с вами уже научились решать уравнения для косинуса, давайте теперь научимся решать подобные уравнения и для синуса. Рассмотрим sin(x)= √3/2. Для решения этого уравнения требуется построить прямую y= √3/2 и посмотреть: в каких точках она пересекает числовую окружность. Видно, что прямая пересекает окружность в двух точках F и G. Эти точки и будут решением нашего уравнения. Переобозначим F как x1, а G как x2. Решение этого уравнения мы уже находили и получили: x1= π/3 + 2πk,
а x2= 2π/3 + 2πk.

Решить данное уравнение довольно просто, но как решить, например, уравнение
sin(x)= 5/6. Очевидно, что это уравнение будет иметь также два корня, но какие значения будут соответствовать решению на числовой окружности? Давайте внимательно посмотрим на наше уравнение sin(x)= 5/6.
Решением нашего уравнения будут две точки: F= x1 + 2πk и G= x2 + 2πk,
где x1 – длина дуги AF, x2 – длина дуги AG.
Заметим: x2= π — x1, т.к. AF= AC — FC, но FC= AG, AF= AC — AG= π — x1.
Но, что это за точки?

Читайте также:  Как удалить программу из облака в iphone

Столкнувшись с подобной ситуацией, математики придумали новый символ – arcsin(x). Читается, как арксинус.

Тогда решение нашего уравнения запишется так: x1= arcsin(5/6), x2= π -arcsin(5/6).

И решение в общем виде: x= arcsin(5/6) + 2πk и x= π — arcsin(5/6) + 2πk.
Арксинус — это угол (длина дуги AF, AG) синус, которого равен 5/6.

Немного истории арксинуса

История происхождения нашего символа совершенно такая же, как и у arccos. Впервые символ arcsin появляется в работах математика Шерфера и известного французского ученого Ж.Л. Лагранжа. Несколько ранее понятие арксинус рассматривал Д. Бернули, правда записывал его другими символами.

Общепринятыми эти символы стали лишь в конце XVIII столетия. Приставка "arc" происходит от латинского "arcus" (лук, дуга). Это вполне согласуется со смыслом понятия: arcsin x — это угол (а можно сказать и дуга), синус которого равен x.

Определение арксинуса

Если |а|≤ 1, то arcsin(a) – это такое число из отрезка [- π/2; π/2], синус которого равен а.

Если |а|≤ 1, то уравнение sin(x)= a имеет решение: x= arcsin(a) + 2πk и
x= π — arcsin(a) + 2πk

x= π — arcsin(a) + 2πk = -arcsin(a) + π(1 + 2k).

Ребята, посмотрите внимательно на два наших решения. Как думаете: можно ли их записать общей формулой? Заметим, что если перед арксинусом стоит знак "плюс", то π умножается на четное число 2πk, а если знак "минус", то множитель — нечетный 2k+1.
С учётом этого, запишем общую формула решения для уравнения sin(x)=a:

Есть три случая, в которых предпочитают записывать решения более простым способом:

sin(x)=1, то x= π/2 + 2πk,

Для любого -1 ≤ а ≤ 1 выполняется равенство: arcsin(-a)=-arcsin(a).

Таблица значений арксинуса

Таблица значений синуса

Таблица значений арксинуса

Напишем таблицу значений косинуса наоборот и получим таблицу для арксинуса.

Примеры

1. Вычислить: arcsin(√3/2).
Решение: Пусть arcsin(√3/2)= x, тогда sin(x)= √3/2. По определению: — π/2 ≤x≤ π/2. Посмотрим значения синуса в таблице: x= π/3, т.к. sin(π/3)= √3/2 и –π/2 ≤ π/3 ≤ π/2.
Ответ: arcsin(√3/2)= π/3.

2. Вычислить: arcsin(-1/2).
Решение: Пусть arcsin(-1/2)= x, тогда sin(x)= -1/2. По определению: — π/2 ≤x≤ π/2. Посмотрим значения синуса в таблице: x= -π/6, т.к. sin(-π/6)= -1/2 и -π/2 ≤-π/6≤ π/2.
Ответ: arcsin(-1/2)=-π/6.

3. Вычислить: arcsin(0).
Решение: Пусть arcsin(0)= x, тогда sin(x)= 0. По определению: — π/2 ≤x≤ π/2. Посмотрим значения синуса в таблице: значит x= 0, т.к. sin(0)= 0 и — π/2 ≤ 0 ≤ π/2. Ответ: arcsin(0)=0.

4. Решить уравнение: sin(x) = -√2/2.
Решение: Воспользуемся определением, тогда решение запишется в виде:
x= arcsin(-√2/2) + 2πk и x= π — arcsin(-√2/2 ) + 2πk.
Посмотрим в таблице значение: arcsin (-√2/2 )= -π/4.
Ответ: x= -π/4 + 2πk и x= 5π/4 + 2πk.

5. Решить уравнение: sin(x) = 0.
Решение: Воспользуемся определением, тогда решение запишется в виде:
x= arcsin(0) + 2πk и x= π — arcsin(0) + 2πk. Посмотрим в таблице значение: arcsin(0)= 0.
Ответ: x= 2πk и x= π + 2πk

6. Решить уравнение: sin(x) = 3/5.
Решение: Воспользуемся определением, тогда решение запишется в виде:
x= arcsin(3/5) + 2πk и x= π — arcsin(3/5) + 2πk.
Ответ: x= (-1) n — arcsin(3/5) + πk.

7. Решить неравенство sin(x)

Задачи на арксинус для самостоятельного решения

1) Вычислить: а) arcsin(√2/2), б) arcsin(1/2), в) arcsin(1), г) arcsin(-0.8).
2) Решить уравнение: а) sin(x) = 1/2, б) sin(x) = 1, в) sin(x) = √3/2, г) sin(x) = 0.25,
д) sin(x) = -1.2.
3) Решить неравенство: а) sin (x)> 0.6, б) sin (x)≤ 1/2.

Ссылка на основную публикацию
Установить gvlk ключ что это
В связи с недавним выходом окончательной RTM версии пакета Microsoft Office 2016, корпоративные заказчики уже могут начинать переход на новую...
Топ вай фай адаптеров для пк
На заре развития интернета люди пользовались только проводным трафиком. После этого в «моду» начали входить модемы, которые подключались к беспроводному...
Топ дешевых наушников с хорошим звуком
Проводные наушники должны умереть! Так решил мобильный рынок и производители смартфонов, стремительно избавляющиеся от устаревшего 3,5 мм джека. Стоит ли...
Установить openal32 dll для windows 7
Данная библиотека задействуется во многих процессах во время работы компьютера. Например, она используется в играх, мультимедиа и различных программах. Иногда...
Adblock detector