Формула шеннона используется для определения

Формула шеннона используется для определения

Существует множество ситуаций, когда возможные события имеют различные вероятности реализации. Например, если монета несимметрична (одна сторона тяжелее другой), то при ее бросании вероятности выпадения «орла» и «решки» будут различаться.

Формулу для вычисления количества информации для событий с различными вероятностями предложил К. Шеннон в 1948 г. В этом случае количество информации определяется по формуле:

где I — количество информации;

N — количество возможных событий;

Pi — вероятности отдельных событий.

Для частного, но широко распространенного и рассмотренного выше случая, когда события равновероятны (р;= 1 / N), величину количества информации I можно рассчитать по формуле:

Задание «Бросание пирамидки». Определить количество информации, которое мы получаем в результате бросания несимметричной и симметричной пирамидок.

При бросании несимметричной четырехгранной пирамидки вероятности отдельных событий равны:

Количество информации, которое мы получим после бросания несимметричной пирамидки, можно рассчитать по формуле (2.3):

При бросании симметричной четырехгранной пирамидки вероятности отдельных событий равны между собой:

Количество информации, которое мы получим после бросания симметричной пирамидки, можно рассчитать по формуле (2.4):

Таким образом, при бросании симметричной пирамидки, когда события равновероятны, мы получим большее количество информации (2 бита), чем при бросании несимметричной пирамидки, когда события неравновероятны (1,75 бита).

Количество информации, которое мы получаем, достигает максимального значения, если события равновероятны.

В теории информации доказано, что максимальное количество информации несет сообщение, в котором вероятности появления всех знаков одинаковы.

Количество информации, которое несет знак, зависит от вероятности его получения. Если получатель заранее точно знает, какой знак придет, то полученное количество информации будет равно 0. Наоборот, чем менее вероятно получение знака, тем больше его информационная емкость.

В русской письменной речи частота использования букв в тексте различна, так, в среднем на 1000 знаков осмысленного текста приходится 200 букв «а» и в сто раз меньшее количество буквы «ф» (всего 2). Таким образом, с точки зрения теории информации информационная емкость знаков русского алфавита различна (у буквы «а» она наименьшая, а у буквы «ф» — наибольшая).

Читайте также:  Верхняя часть экрана потемнела

Проведем воображаемый эксперимент: пусть обезьяна передает бессмысленный текст, случайно нажимая клавиши клавиатуры компьютера (в этом случае вероятности появления знаков одинаковы), а человек передает имеющее смысл сообщение такой же длины (в этом случае вероятности появления знаков различны).

Из теории информации следует парадоксальный вывод о том, что сообщение, передаваемое обезьяной, содержит большее количество информации, чем сообщение, передаваемое человеком.

Выбор правильной стратегии в игре «Угадай число». На получении максимального количества информации строится выбор правильной стратегии в игре «Угадай число», в которой первый участник загадывает целое число (например, 3) из заданного интервала (например, от 1 до 16), а второй должен «угадать» задуманное число.

Если рассмотреть эту игру с информационной точки зрения, то начальная неопределенность знаний для второго участника составляет 16 возможных событий (вариантов загаданных чисел).

При правильной стратегии интервал чисел всегда должен делиться пополам, тогда количество возможных событий (чисел) в каждом из полученных интервалов будет одинаково и их отгадывание равновероятно. В этом случае на каждом шаге ответ первого игрока («да» или «нет») будет нести максимальное количество информации (1 бит).

Как видно из табл. 2.4, угадывание числа 3 произошло за четыре шага, на каждом из которых неопределенность знаний второго участника уменьшалась в два раза за счет получения сообщений от первого участника, содержащих 1 бит информации. Таким образом, количество информации, необходимое для отгадывания одного из 16 чисел, составило 4 бита.

Информационная модель игры «Угадай число»

Вопрос второго участника

Неопределенность знаний (количество возможных событий)

Вычисление количества энтропии по таблице вероятностей с помощью формулы Шеннона.

Энтропия H и количество получаемой в результате снятия неопределенности информации I зависят от исходного количества рассматриваемых вариантов N и априорных вероятностей реализации каждого из них P: , т. е. H=F(N, P). Расчет энтропии в этом случае производится по формуле Шеннона, предложенной им в 1948 году в статье «Математическая теория связи».

Читайте также:  Эмулятор sega для pc на русском

Минус используется из-за того, что логарифм числа меньшего единицы, величина отрицательная. Но так как
,
то формулу можно записать еще в виде

интерпретируется как частное количество информации, получаемое в случае реализации i-ого варианта ( ).

Таким образом энтропия в формуле Шеннона является средней характеристикой — математическим ожиданием распределения случайной величины , и может быть использована как мера информационной неопределенности.

Ниже два калькулятора — один рассчитывает энтропию по заданной таблице вероятностей, другой — на основе анализа встречамости символов в блоке текста.

Существует множество ситуаций, когда возможные события имеют различные вероятности реализации. Например, если монета несимметрична (одна сторона тяжелее другой), то при ее бросании вероятности выпадения "орла" и "решки" будут различаться.

Формулу для вычисления количества информации в случае различных вероятностей событий предложил К. Шеннон в 1948 году. В этом случае количество информации определяется по формуле:

(2.2)

где I — количество информации;
N — количество возможных событий;
рi — вероятность i-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

Тогда количество информации, которое мы получим после реализации одного из них, можно рассчитать по формуле (2.2):

I = -(l/2 log2l/2 + l/4 log2l/4 + l/8 log2l/8 + l/8 log2l/8) = (1/2 + 2/4 + 3/8 + 3/8) битов = 14/8 битов = 1,75 бита.

Этот подход к определению количества информации называется вероятностным.

Для частного, но широко распространенного и рассмотренного выше случая, когда события равновероятны (pi= 1/N), величину количества информации I можно рассчитать по формуле:

(2.3)

По формуле (2.3) можно определить, например, количество информации, которое мы получим при бросании симметричной и однородной четырехгранной пирамидки:

I = log24 = 2 бита. Таким образом, при бросании симметричной пирамидки, когда события равновероятны, мы получим большее количество информации (2 бита), чем при бросании несимметричной (1,75 бита), когда события неравновероятны.

Количество информации, которое мы получаем, достигает максимального значения, если события равновероятны.

Выбор оптимальной стратегии в игре "Угадай число". На получении максимального количества информации строится выбор оптимальной стратегии в игре "Угадай число", в которой первый участник загадывает целое число (например, 3) из заданного интервала (например, от 1 до 16), а второй — должен "угадать" задуманное число. Если рассмотреть эту игру с информационной точки зрения, то начальная неопределенность знаний для второго участника составляет 16 возможных событий (вариантов загаданных чисел).

Читайте также:  Пульсирует левое ухо но не болит

При оптимальной стратегии интервал чисел всегда должен делиться пополам, тогда количество возможных событий (чисел) в каждом из полученных интервалов будет одинаково и отгадывание интервалов равновероятно. В этом случае на каждом шаге ответ первого игрока ("Да" или "Нет") будет нести максимальное количество информации (1 бит).

Как видно из табл. 1.1, угадывание числа 3 произошло за четыре шага, на каждом из которых неопределенность знаний второго участника уменьшалась в два раза за счет получения сообщения от первого участника, содержащего 1 бит информации. Таким образом, количество информации, необходимое для отгадывания одного из 16 чисел, составило 4 бита.

Таблица 2.1. Информационная модель игры "Угадай число"
Вопрос второго участника Ответ первого участника Неопределенность знаний (количество возможных событий) Полученное количество информации
16
Число больше 8? Нет 8 1 бит
Число больше 4? Нет 4 1 бит
Число больше 2? Да 2 1 бит
Число 3? Да 1 1 бит

1.3. Вычислить с помощью электронного калькулятора количество информации, которое будет получено:

  • при бросании симметричного шестигранного кубика;
  • при игре в рулетку с 72 секторами;
  • при игре в шахматы игроком за черных после первого хода белых, если считать все ходы равновероятными;
  • при игре в шашки.

1.4. Вероятность первого события составляет 0,5, а второго и третьего — 0,25. Какое количество информации мы получим после реализации одного из них?

1.5. Какое количество информации получит второй игрок в игре "Угадай число" при оптимальной стратегии, если первый игрок загадал число: от 1 до 64? От 1 до 128?

Ссылка на основную публикацию
Установить gvlk ключ что это
В связи с недавним выходом окончательной RTM версии пакета Microsoft Office 2016, корпоративные заказчики уже могут начинать переход на новую...
Топ вай фай адаптеров для пк
На заре развития интернета люди пользовались только проводным трафиком. После этого в «моду» начали входить модемы, которые подключались к беспроводному...
Топ дешевых наушников с хорошим звуком
Проводные наушники должны умереть! Так решил мобильный рынок и производители смартфонов, стремительно избавляющиеся от устаревшего 3,5 мм джека. Стоит ли...
Установить openal32 dll для windows 7
Данная библиотека задействуется во многих процессах во время работы компьютера. Например, она используется в играх, мультимедиа и различных программах. Иногда...
Adblock detector