Энергия упругой деформации пружины

Энергия упругой деформации пружины

Деформированное упругое тело (например, растянутая или сжатая пружина) способно, возвращаясь в недеформированное состояние, совершить работу над соприкасающимися с ним телами. Следовательно, упруго деформированное тело обладает потенциальной энергией. Она зависит от взаимного положения частей тела, например витков пружины. Работа, которую может совершить растянутая пружина, зависит от начального и конечного растяжений пружины. Найдем работу, которую может совершить растянутая пружина, возвращаясь к нерастянутому состоянию, т. е. найдем потенциальную энергию растянутой пружины.

Пусть растянутая пружина закреплена одним концом, а второй конец, перемещаясь, совершает работу. Нужно учитывать, что сила, с которой действует пружина, не остается постоянной, а изменяется пропорционально растяжению. Если первоначальное растяжение пружины, считая от нерастянутого состояния, равнялось , то первоначальное значение силы упругости составляло , где — коэффициент пропорциональности, который называют жесткостью пружины. По мере сокращения пружины эта сила линейно убывает от значения до нуля. Значит, среднее значение силы равно . Можно показать, что работа равна этому среднему, умноженному на перемещение точки приложения силы:

.

Таким образом, потенциальная энергия растянутой пружины

(98.1)

Такое же выражение получается для сжатой пружины.

В формуле (98.1) потенциальная энергия выражена через жесткость пружины и через ее растяжение . Заменив на , где — упругая сила, соответствующая растяжению (или сжатию) пружины , получим выражение

, (98.2)

которое определяет потенциальную энергию пружины, растянутой (или сжатой) силой . Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, т.е. чем больше ее упругость, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной растягивающей, силе. Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на перемещение точки приложения силы, т. е. работа.

Эта закономерность имеет большое значение, например, при устройстве различных рессор и амортизаторов: при посадке на землю самолета амортизатор шасси, сжимаясь, должен произвести большую работу, гася вертикальную скорость самолета. В амортизаторе с малой жесткостью сжатие будет больше, зато возникающие силы упругости будут меньше и самолет будет лучше предохранен от повреждений. По той же причине при тугой накачке шин велосипеда дорожные толчки ощущаются резче, чем при слабой накачке.

Все формулы по физике и математике

Темы по физике

  • Механика (56)
  • Кинематика (19)
  • Динамика и статика (32)
  • Гидростатика (5)
  • Молекулярная физика (25)
  • Уравнение состояния (3)
  • Термодинамика (15)
  • Броуновское движение (6)
  • Прочие формулы по молекулярной физике (1)
  • Колебания и волны (22)
  • Оптика (9)
  • Геометрическая оптика (3)
  • Физическая оптика (5)
  • Волновая оптика (1)
  • Электричество (39)
  • Атомная физика (15)
  • Ядерная физика (3)

    Темы по математике

    • Квадратный корень, рациональные переходы (1)
    • Квадратный трехчлен (1)
    • Координатный метод в стереометрии (1)
    • Логарифмы (1)
    • Логарифмы, рациональные переходы (1)
    • Модуль (1)
    • Модуль, рациональные переходы (1)
    • Планиметрия (1)
    • Прогрессии (1)
    • Производная функции (1)
    • Степени и корни (1)
    • Стереометрия (1)
    • Тригонометрия (1)
    • Формулы сокращенного умножения (1)
    • Потенциальная энергия упруго деформированного тела — физическая величина, равная половине произведения жесткости тела на квадрат его деформации.

      Энергию деформированного упругого тела также называют энергией положения или потенциальной энергией (ее называют чаще упругой энергией), так как она зависит от взаимного положения частей тела, например витков пружины. Работа, которую может совершить растянутая пружина при перемещении ее конца, зависит только от начального и конечного растяжений пружины. Найдем работу, которую может совершить растянутая пружина, возвращаясь к не растянутому состоянию, то есть найдем упругую энергию растянутой пружины.

      Читайте также:  Как поменять регион на айфоне

      Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

      Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, то есть чем больше коэффициент упругости, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной силе, растянувшей ее. Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на путь точки приложения силы.

      Потенциальная энергия :

      Кинетическая энергия

      Тут мы использовали :

      — Потенциальная энергия упруго деформированного тела

      — Коэффициент упругости пружины

      — Деформация пружины

      Груз мас­сой m, под­ве­шен­ный к пру­жи­не, со­вер­ша­ет ко­ле­ба­ния с пе­ри­о­дом T и ам­пли­ту­дой Что про­изой­дет с пе­ри­о­дом ко­ле­ба­ний, мак­си­маль­ной по­тен­ци­аль­ной энер­ги­ей пру­жи­ны и ча­сто­той ко­ле­ба­ний, если при не­из­мен­ной ам­пли­ту­де умень­шить массу груза?

      Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

      3) не из­ме­ни­лась.

      За­пи­ши­те в таб­ли­цу вы­бран­ные цифры для каж­дой фи­зи­че­ской ве­ли­чи­ны. Цифры в от­ве­те могут по­вто­рять­ся.

      Пе­ри­од ко­ле­ба­ний Мак­си­маль­ная по­тен­ци­аль­ная

      Ча­сто­та ко­ле­ба­ний

      Пе­ри­од ко­ле­ба­ний свя­зан с мас­сой груза и жест­ко­стью пру­жи­ны k со­от­но­ше­ни­ем При умень­ше­нии массы пе­ри­од ко­ле­ба­ний умень­шит­ся. Ча­сто­та об­рат­но про­пор­ци­о­наль­на пе­ри­о­ду, зна­чит, ча­сто­та уве­ли­чит­ся.

      С мак­си­маль­ной по­тен­ци­аль­ной энер­ги­ей пру­жи­ны все не­мно­го слож­нее. Для от­ве­та на во­прос, что с ней про­изой­дет су­ще­ствен­но, что пру­жи­на ори­ен­ти­ро­ва­на вер­ти­каль­но (для го­ри­зон­таль­но­го пру­жин­но­го ма­ят­ни­ка при не­из­мен­ной ам­пли­ту­де дан­ная ве­ли­чи­на, есте­ствен­но, оста­нет­ся не­из­мен­ной). Дей­стви­тель­но, когда к вер­ти­каль­ной пру­жи­не под­ве­ши­ва­ют груз, она сразу не­мно­го рас­тя­ги­ва­ет­ся, чтобы урав­но­ве­сить силу тя­же­сти, дей­ству­ю­щую на груз. Опре­де­лим это на­чаль­ное рас­тя­же­ние: Имен­но это со­сто­я­ние яв­ля­ет­ся по­ло­же­ни­ем рав­но­ве­сия для вер­ти­каль­но­го пру­жин­но­го ма­ят­ни­ка, ко­ле­ба­ния про­ис­хо­дят во­круг него, груз под­ни­ма­ет­ся и опус­ка­ет­ся из этого по­ло­же­ния на ве­ли­чи­ну ам­пли­ту­ды. При дви­же­нии вниз из по­ло­же­ния рав­но­ве­сия пру­жи­на про­дол­жа­ет рас­тя­ги­вать­ся, а зна­чит, по­тен­ци­аль­ная энер­гия пру­жи­ны про­дол­жа­ет уве­ли­чи­вать­ся. При дви­же­нии вверх из по­ло­же­ния рав­но­ве­сия, спер­ва де­фор­ма­ция пру­жи­ны умень­ша­ет­ся, а если то пру­жи­ны нач­нет сжи­мать­ся. Мак­си­маль­ной по­тен­ци­аль­ной энер­гии пру­жи­ны со­от­вет­ству­ет со­сто­я­ние, когда она мак­си­маль­но рас­тя­ну­та, а зна­чит, в нашем слу­чае, это по­ло­же­ние, когда груз опу­стил­ся мак­си­маль­но вниз. Таким об­ра­зом, мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны равна

      Из этой фор­му­лы видно, что для вер­ти­каль­но­го пру­жин­но­го ма­ят­ни­ка при не­из­мен­ной ам­пли­ту­де и умень­ше­нии массы груза мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны умень­шит­ся.

      Встречается довольно большое количество различных механизмов, частью которых является пружина. Этот конструктивный элемент характеризуется довольно большим количество различных особенностей, которые должны учитываться. Примером можно назвать понятие потенциальной энергии пружины. Рассмотрим все особенности данного вопроса подробнее.

      Понятие потенциальной энергии пружины

      При рассмотрении того, что такое потенциальная энергия пружины следует уделить внимание самому понятию – свойство, которым могут обладать тела при нахождении на земле. Этот момент определяет то, что ей могут обладать самые разнообразные изделия, в том числе рассматриваемое. К особенностям рассматриваемого понятия можно отнести следующее:

      1. Потенциальная энергия в рассматриваемом случае формируется по причине изменения состояния. Даже при несущественном смещении витков относительно друг друга считается изменением состояния подобного изделия.
      2. Для того чтобы изменить состояние изделия совершается определенное действие. Зачастую для этого проводится прикладывание усилия. При этом важно провести расчет требуемого усилия для сжатия витков.
      3. После выполнения определенной работы большая часть усилия, которое было потрачено на выполнение действия высвобождается при определенных обстоятельствах. Как правило, этот процесс предусматривает возврат витков в свое первоначальное положение. Это достигается за счет особой формы изделия, а также применения соответствующего материала, который обладает повышенной упругостью. Именно за счет этого свойства зачастую проводится установка рассматриваемого изделия. Показатель может достигать весьма высоких показателей, которой достаточно для реализации различных задач. Распространенным примером можно назвать установку пружины в запорных и предохранительных элементах, которые отвечают за непосредственное возращение запорного элемента в требуемое положение.
      Читайте также:  Кпд инвертора 12 220

      Она также широко применяется при создании самых различных механизмов, к примеру, заводных часов. При проектировании различных механизмов учитывается закон сохранения механической силы, которая характеризуется довольно большим количеством особенностей.

      Закон сохранения механической энергии

      Согласно установленным законам механическое воздействие консервативной механической системы сохраняется во времени. Этот момент определяет то, что потенциальная энергия деформированной пружины не может возникнуть сама или исчезнуть куда-нибудь. Именно поэтому для ее создания нужно приложить соответствующее усилие.

      Рассматриваемый закон относится к категории интегральных равенств. Эта закономерность определяет то, что он складывается их действия дифференциальных законов, является свойством или признаком совокупного воздействия.

      Для проведения соответствующих расчетов должна применяться определенная формула. Сила, с которой оказывается воздействие, не является постоянной. Именно поэтому для ее вычисления применяется графический метод. Самая простая зависимость может быть описана следующим образом: F=kx. При применении подобной зависимости построенная координатная линия будет представлена прямой линией, которая расположена под углом относительно системы координат.

      Приписать подобному устройству потенциальную энергию можно только в том случае, если она равна максимальной работе и не зависит от условной траектории движения. Проведенные исследования указывают на то, что подобная работа подчиняется закону Гука. Для определения основного показателя применяется следующая формула: U=kk2/2.

      Для деформирования витков к ним должно быть приложено определенное усилие, так как в противном случае кинетическая сила не возникнет.

      Динамика твердого тела

      Некоторые определить выражения (определяется при применении наиболее подходящих формул) можно только с учетом правил, касающихся динамики твердых объектов. Этому вопросу посвящен целый раздел. При расчете потенциальной энергии сжатой пружины также применяются некоторые законы этого раздела

      Динамика твердого тела рассматривается по причине того, что в большинстве случаев механизм совершает действие, связанное с непосредственным перемещением какого-либо объекта.

      Рассматриваемое свойство изделия может изменяться в зависимости от динамики твердого тела. Это связано с тем, что на изделие оказывается и воздействие со стороны окружающей среды. Примером можно назвать трение или нагрев.

      Момент силы и момент импульса относительно оси

      Рассмотрение деформации пружины проводится также с учетом момента силы и импульса относительно оси. Эти два параметра позволяют рассчитать все требуемые показатели с более высокой точностью. Довольно распространенным вопросом можно назвать чему равен момент силы – векторная величина, которая определяется векторному произведению радиуса на вектор приложенной силы.

      Момент импульса – величина, которая применяется для определения количества вращательного движения.

      Среди особенностей подобного показателя можно отметить следующее:

      1. Масса вращения. Объект может характеризоваться различной массой.
      2. Распределение относительно оси. Ось может быть расположена на различном расстоянии от самого объекта.
      3. Скорость вращения. Это свойство считается наиболее важным, в зависимости от конструкции он может быть постоянным или изменяться.
      Читайте также:  Как найти центр радиуса

      Расчет каждого показателя проводится при применении соответствующей формулы. В некоторых случаях проводится измерение требуемых вводных данных, без которых провести вычисления не получится.

      Уравнение движения вращающегося тела

      Рассматривая подобное свойство также следует уделить внимание уравнению движения вращающегося тела. Не стоит забывать о том, что вращательное движение твердого тела характеризуется наличием как минимум двух точек. При этом отметим нижеприведенные особенности:

      1. Прямая, которая соединяет две точки, выступает в качестве оси вращения.
      2. Есть возможность провести определение места положения объекта в случае вычисления заднего угла между двумя плоскостями.
      3. Наиболее важным показателем можно назвать угловую скорость. Она связана с инерцией, которая возникает при вращении объекта.

      Для вычисления угловой скорости применяется специальная формула, которая выглядит следующим образом: w=df/dt. В некоторых случаях проводится вычисление углового ускорения, которое также является важной величиной.

      Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

      Упруго деформированное тело, например, растянутый или сжатый стержень, возвращаясь в недеформированное состояние, может, подобно сжатой или растянутой пружине, совершить работу над внешними телами, т. е. обладает некоторым запасом энергии. Поскольку эта энергия обусловлена взаимным расположением элементов тела, она представляет собой потенциальную энергию. Запас энергии деформированного тела равен, очевидно, работе, которая совершается внешними силами при деформации.

      Вычислим энергию упруго растянутого (сжатого) стержня. При растяжении на стержень необходимо действовать силой, величина которой определяется выраже­нием (113). Работа этой силы равна

      где буквой х обозначено абсолютное удлинение стержня, которое в процессе деформации изменяется от 0 до Δl. Сила f, соответствующая удлинению х, согласно (113) равна

      Умножая числитель и знаменатель полученного выражения на l, заменяя затем отношение Δl/l относительным удлинением ε и учитывая, наконец, что Sl дает объем стержня V, получим:

      (121)

      Введем в рассмотрение плотность энергии u, которую определим как отношение энергии ΔU к тому объему ΔV, в котором она заключена:

      Поскольку в нашем случае стержень однороден и деформация является равномерной, т. е. одинаковой в разных точках стержня, энергия (121) распределена в стержне также равномерно с постоянной плотностью. Поэтому можно считать:

      (122)

      Выражение (122) дает плотность энергии упругой деформации при растяжении (или при сжатии). Аналогичным образом можно получить, что плотность энергии упругой деформации при сдвиге равна

      (123)

      Не нашли то, что искали? Воспользуйтесь поиском:

      Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9218 — | 7813 — или читать все.

      Ссылка на основную публикацию
      Шпионский софт родом из холода
      Borderlands: The Pre-Sequel! Разработчики 2K Australia Gearbox Software Издатели 2K Games Часть серии Borderlands Дата выпуска 17 октября 2014 года...
      Что делать если плохо работает отпечаток пальца
      Владельцы современных смартфонов на платформе Android нередко сталкиваются с тем, что сканер отпечатков пальцев реагирует недостаточно быстро и точно. Зачастую...
      Что делать если пропал звук в наушниках
      Всё о Интернете, сетях, компьютерах, Windows, iOS и Android Нет звука в наушниках на телефоне — что делать?! А Вы...
      Штампованные диски арриво отзывы
      Приветствую всех! Запись будет, как Вы уже догадались, о дисках.Дело в том, что я любитель иметь на автомобиле два комплекта...
      Adblock detector